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Abstract—We answer Bryant’s combinatorial challenge on minimal walks of

phylogenetic treespace under the nearest-neighbor interchange (NNI) metric. We

show that the shortest path through the NNI-treespace of n-leaf trees is

Hamiltonian for all n. That is, there is a minimal path that visits all binary trees

exactly once, under NNI moves.

Index Terms—Phylogenetic tree construction, graph theory, analysis of

algorithms

Ç

1 INTRODUCTION

PHYLOGENETIC trees depict the evolutionary relationships within a
set of taxa, represented as leaf labels [8]. The trees may be
rooted—in which case they illustrate the ancestry of the taxa—or
unrooted. In this paper, we look at unrooted phylogenies.

Finding the tree that best fits the data, where the data are a set

of taxa and ordered characters, is a central goal of evolutionary

biology. However, the number of possible trees grows as an

exponential function of the number of taxa, and finding the

optimal tree under the criteria most used by biologists is NP-hard

[5], [7]. Due to the size of the search space, exhaustive search is

often not possible, so heuristic search is often used to discover the

best tree. To systematically traverse the space, it is necessary that it

be arranged in some manner. A common arrangement is to link

trees that are a single move apart under some tree rearrangement

operation; the resulting graph is often called a treespace.
Focusing on trees that differ by a single nearest-neighbor

interchange (NNI) move, David Bryant asked for the length of the

shortest walk that visits all trees in NNI treespace [2]. Two metrics

that yield more neighbors than NNI (namely subtree prune and

regraft (SPR) and tree bisection and reconnection (TBR)) have the

shortest walk possible: a Hamiltonian path [3]. Previous to our

current work, the best known NNI-walk of all binary trees visited

every tree at most twice [3].
We show that, for all n, a Hamiltonian path exists on the space

of all binary trees on n leaves under the NNI metric, settling

Bryant’s challenge. We follow the strategy of previous work in

expanding Hamiltonian paths on n-leaf trees to the space of all

binary trees on ðnþ 1Þ leaves [3]. This idea does not work directly

for NNI-walks, but can be employed with a subtle twist. Instead of

developing walks on the expansion of a single n-leaf tree, we look

at all trees that can be created from subsequent triples of n-leaf

trees on the Hamiltonian path of the smaller space. Using the

Hamiltonian path of the smaller space as a “backbone,” we can

then “glue” together the unions of the expansions to form a
Hamiltonian path on the ðnþ 1Þ-leaf trees. Since every NNI move
can be simulated by a subtree prune and regraft (SPR) or tree
bisection and reconnection (TBR) move, this paper provides an
alternative proof for the existence of Hamiltonian paths for the SPR
and TBR treespaces.

2 BACKGROUND

We briefly define binary phylogenetic trees and the associated
terms used in this paper. For a more detailed treatment (see [8]).

Phylogenetic trees depict evolutionary relationships between
taxa placed at the leaves. Trees can be rooted, in which case they
illustrate the ancestry of the taxa, or unrooted. We look at the
unrooted binary phylogenetic trees (hereafter referred to as trees).
Formerly, as defined by Robinson:

Definition 1 [6]. A (binary) phylogenetic tree is a graph G on
collection of labeled nodes L (the taxa) and unlabeled interior vertices.
The labeled nodes form the leaves of the tree and, therefore, have

valency 1, and each interior vertex has valency 3.

We will use a well-known fact about the number of unrooted
binary trees:

Lemma 1 [6]. For n taxa, there are ð2n� 5Þ!! ¼ ð2n� 5Þð2n� 3Þ . . . 5 �
3 � 1 possible unrooted trees.

Note that for all n � 4, ð2n� 5Þ!! is divisible by 3. We will use
this characteristic of treespace to partition paths of n-leaf trees into
triples. We will also examine pairs of leaves:

Definition 2. A sibling pair, or cherry, is a pair of leaves whose
incident edges share a common vertex.

Difference measures on trees induce metric spaces on the set of
n-leaf trees. We will focus on metrics that measure shape
differences between trees (and ignore differences in the lengths
of edges or branches). These metrics induce a discrete space that
can be represented by a graph:

Definition 3. Given a set of trees T ¼ fT1; T2; . . . ; Tkg with n leaves

labeled by S, G ¼ ðT ; EÞ, or treespace, is the graph G with vertices
labeled by T and the edges E connecting vertices that are
“neighbors”—distance one apart under a given metric.

Bryant’s challenge focuses on NNI. Other popular metrics
include SPR and TBR [1].

Definition 4 [1]. A nearest-neighbor interchange swaps any two
subtrees connected to opposite ends of an edge (see Fig. 1). The

NNI distance (dNNI ) between two trees is the minimum number of
NNI operations that transforms one of the trees into the other.

We note that the NNI operation is symmetric in that any NNI
tree rearrangement operation can be reversed. These moves define
neighborhoods on the space:

Definition 5. Let d be a discrete tree metric. The set of all trees Tm where
dðT; TmÞ � 1 is the 1-neighborhood (or simply neighborhood)

of T .

An n-leaf tree has n� 3 internal edges. Using an NNI move, a
new tree can be formed by swapping one of the four subtrees on
the opposite sides of the internal edge (see Fig. 1). Only two of
these swaps will produce new trees, and thus every n-leaf tree has
2ðn� 3Þ neighbors in NNI treespace.

The challenge on which we focus is phrased in terms of
“walks,” we will use this term interchangeably with the common
term from the graph theory: “paths.”
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Definition 6 [2]. An NNI-walk is a sequence T1; T2; . . . ; Tk of unrooted

binary phylogenetic trees where each consecutive pair of trees differ by

a single NNI move.

Definition 7 [4]. A Hamiltonian path in a graph is a simple path that

visits every node exactly once. This path can be represented as an

ordered set of nodes, v1; v2; . . . ; vn, where vi is connected to viþ1 by

an edge.

Determining whether an arbitrary graph has a Hamiltonian

path is NP-hard [4]. However, for many classes of graphs (for

example, complete graphs), Hamiltonicity can be determined

easily in polynomial time.

3 MAIN RESULTS

We prove that a Hamiltonian path exists through the set of n-

leaf trees under the NNI metric, for all n. The proof constructs

a Hamiltonian path of the ðnþ 1Þ-leaf treespace from a

Hamiltonian path of the n-leaf treespace (see Fig. 2). This is

done by taking subsequent triples from the path of the n-leaf

treespace and constructing a path through all ðnþ 1Þ-leaf trees

that be created from those three trees (formally defined as the

“expansion” of trees, below). Since every ðnþ 1Þ-leaf tree

belongs to exactly one such expansion of a triple, linking the

paths of the expansions yields a path that visits every ðnþ 1Þ-
leaf tree exactly once.

Definition 8. Let T be an n-leaf tree and e an edge of T . The

expansion of an edge, e, is the ðnþ 1Þ-leaf tree, T ðeÞ, generated

when a new leaf is added to that edge. Let the expansion of an n-leaf

tree, T , be the set of ðnþ 1Þ-leaf trees that can be generated from

expanding all edges of T (see Fig. 3).

If two trees differ by only a single NNI move, then the edges of

the trees are identical, except for a single edge, that we call the

“edge of difference”. Formally:

Definition 9. Consider two trees, T1 and T2, that differ by one NNI

move. Let ed, the edge of difference, be the single edge in the

symmetric difference between the set of edges of T1 and the set of edges

of T2.

We note that the size of the expansion of an n-leaf tree is

independent of the given tree topology and depends only on the

number of internal edges. Likewise, in a binary tree, the number of

internal edges is a function of the number of leaves. For a given

tree T with n leaves, there are 2n� 3 trees with nþ 1 leaves

contained in the expansion of T. We first prove several useful

lemmas about expansion of edges:

Lemma 2. Let T be an unrooted binary tree, and let e1 and e2 be adjacent

edges on T . T ðe1Þ and T ðe2Þ differ by one NNI move.

Proof. Let e1 and e2 be adjacent edges in an n-leaf tree. Let S be

the subtree whose root edge is incident with e1 and e2. The

addition of a new leaf, lnþ1, creates two new edges: e3, which

connects the new leaf node to the tree and e4, which separates

S and lnþ1. In T ðe1Þ, lnþ1 is between e1 and e4, and S is

between e4 and e2. The opposite occurs in the T ðe2Þ. In that

case, S is between e1 and e4, and lnþ1 is between e4 and e2.

That is, T ðe1Þ and T ðe2Þ have the same tree topology saved for

the arrangement around e4. Since the new taxon and the

rooted subtree are on opposite sides of e4, an internal branch,

swapping them costs only one NNI move. Therefore, T ðe1Þ
and T ðe2Þ differ by one NNI move. tu

Lemma 3. Let T1 and T2 be two unrooted binary trees where T1 and T2

differ by one NNI move. Let e be an edge that is not the edge of

difference, ed. T1ðeÞ and T2ðeÞ differ by one NNI move.

Proof. Let A, B, C, and D be the four subtrees whose root edges are

incident to ed, between T1 and T2. By definition, the arrange-

ment of the four subtrees in T1 differ from their arrangement in

T2. Assume, without loss of generality, that e is an edge of A,

and denote by A0 the subtree created by the addition of the new

leaf to e in A. Note that A0 is identical in T1ðeÞ and T2ðeÞ. The

arrangement of A0, B, C, and D around ed is the only difference

between the two trees. Therefore, T1ðeÞ and T2ðeÞ differ by one

NNI move. tu

When focusing on a triple of consecutive trees on a Hamiltonian

path of n-space, there are many subtrees which are identical across

all three trees. The next lemma shows how the expansions of these

subtrees can be traversed such that each node in the expansions is

visited only once (see Fig. 4):
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Fig. 1. The left side shows NNI transformations. To transform T1 into T2 or vice-
versa, interchange the subtree B with the subtree containing the leaf lnþ1. To
transform T2 into T3 or vice-versa, either interchange the subtree containing the
leaf lnþ1 with the subtree containing C and D or interchange the subtree containing
A with the subtree containing B. T1, T2, and T3 are all neighbors in NNI treespace.
The right side illustrates how a path in NNI treespace will be represented in this
paper. Note that, the top series of moves is equivalent to moving from T1 to T2 to
T3, as in the left side of the figure. The bottom right represents the same moves
with the curved edge representing the path of the ðnþ 1Þst leaf, lnþ1.

Fig. 2. The proof of the main result constructs Hamiltonian paths of the ðnþ 1Þ-leaf
treespace from Hamiltonian paths of the n-leaf treespace. This is done by using a
Hamiltonian path of the smaller space (bold path) as a “backbone” for a path of the
larger space. For every triple of trees in the path of the smaller space, a path is
created through its expansion. An example of a path through a triple is boxed. The
various trees in the expansions of the triple are visited in labeled order. These
paths are linked to form the Hamiltonian path of the ðnþ 1Þ-leaf treespace.

Fig. 3. Expansion of an unrooted tree on n leaves to ðnþ 1Þ-leaf trees. When
n ¼ 4, there are five possible edges to which to attach a new leaf, resulting in five
5-leaf trees in the expansion of the initial tree.



Lemma 4. Let T1, T2, and T3 be three unrooted binary n-leaf trees, where

T1 and T2 are NNI neighbors and where T2 and T3 are NNI neighbors.

Let Si be some rooted subtree on Ti where i ¼ 1; 2, or 3. If

S1 ¼ S2 ¼ S3, the union of the expansions of the edges in S1, S2,

and S3 has a Hamiltonian path such that the walk starts on TiðpiÞ,
where pi is the root edge of Si, and ends on TjðpjÞ, where pj is the root

edge of Sj and i 6¼ j.
Proof. We proceed by induction on the size of the subtree.

Base case. The subtree has two leaves and three edges: pi,
which connects the root node to the internal node; li, which
connects the internal node to a leaf node; and ri, which connects
the internal node to the other leaf node. All three edges are
adjacent. By Lemma 2, the expansions of these edges are NNI
neighbors. Since T1 and T2 are one NNI move apart, T1ðp1Þ and
T2ðp2Þ are NNI neighbors by Lemma 3. The rest of the edges
follow suit. That is, TzðyzÞ and Tzþ1ðyzþ1Þ are NNI neighbors
where y 2 fp; l; rg and z 2 f1; 2g.

We can enumerate the possible walks that start from TiðpiÞ
and end at TjðpjÞ, where i 6¼ j (see Fig. 4). We identify the path
through the ðnþ 1Þ-leaf trees by the edge that is expanded:

. p1 ! l1 ! r1 ! r2 ! r3 ! l3 ! l2 ! p2 ! p3,

. p1 ! l1 ! r1 ! r2 ! r3 ! p3 ! l3 ! l2 ! p2, and

. p2 ! r2 ! r1 ! p1 ! l1 ! l2 ! l3 ! r3 ! p3.

We note that since the edges are not directed, each of
the above three paths could be traversed in reverse. Thus, we
have a Hamiltonian path of the expansions of the edges of the
subtrees that begins on TiðpiÞ and ends on TjðpjÞ where i 6¼ j.

Inductive step. Assume that the subtree, Si, has three or more
leaves and at least five edges: pi, which connects the root
node to an internal node; and edges li and ri which are incident
with pi. By Lemma 2, the expansions of these edges are NNI
neighbors. Furthermore, since T1 and T2 are one NNI move
apart, T1ðp1Þ and T2ðp2Þ are NNI neighbors by Lemma 3. The
rest of the edges follow suit. That is, TzðyzÞ and Tzþ1ðyzþ1Þ are
NNI neighbors, where y 2 fp; l; rg and z 2 f1; 2g.

We show that a Hamiltonian path can start on TiðpiÞ and end
on TjðpjÞ where i 6¼ j.

Without loss of generality, assume that li is the root edge of
the inner subtree, Ci. Let T ðC1; C2; C3Þ be the union of the
expansions of all the edges in C1, C2, and C3 except for the
expansions of two of the root edges, li and lj, whose visit we
explicitly show. By the inductive hypothesis, a Hamiltonian
path can start on TiðliÞ, and end on TjðljÞ where i 6¼ j.

Case I. Si is a complex rooted subtree with a leaf attached to
the root. ri connects the first internal node to a leaf (see Fig. 4).
The following are paths of the union starting at TiðpiÞ and
ending at TjðpjÞ, i 6¼ j:

. p1! r1! l1 ! T ðC1; C2; C3Þ! l3! r3! r2! p2! p3,

. p1! r1! l1! T ðC1; C2; C3Þ ! l2! r2! r3! p3! p2,
and

. p2! p1! r1! r2! l2! T ðC1; C2; C3Þ ! l3! r3! p3.

Case II. Si is a complex rooted subtree with another complex
rooted subtree attached to its root. ri connects the first internal
node to another complex subtree, Di. The following are paths of
the union starting at TiðpiÞ and ending at TjðpjÞ, i 6¼ j:

. p1 ! r1 ! T ðD1; D2; D3Þ ! r3 ! l3 ! T ðC1; C2; C3Þ !
l2 ! p2 ! p3,

. p1 ! r1 ! T ðD1; D2; D3Þ ! r2 ! l2 ! T ðC1; C2; C3Þ !
l3 ! p3 ! p2,

. p2 ! r2 ! T ðD1; D2; D3Þ ! r1 ! p1 ! l1 ! T ðC1; C2;

C3Þ ! l3 ! p3.

This completes the proof. tu

Lemma 4 focuses on the union of the expansions of edges in
rooted subtrees that are identical across a triple of subsequent trees
in a path of the n-leaf treespace, giving multiple paths that can
traverse that union from different starting and stopping points.
The following lemma shows how these paths can be “glued”
together to form a path for the unions of the expansions of the
complete trees. The difficulty in the proof is the “lining up” of the
endpoints of paths to create a single longer path. Since Lemma 4
provides paths from any root edge of identical subtrees, it suffices
to show how to traverse the edges of difference in the expansions.

Lemma 5. Let T1, T2, and T3 be three unrooted binary trees, where T1

and T2 are NNI neighbors and where T2 and T3 are NNI neighbors.

For any edge e of T1, there exists a Hamiltonian path of the union of

the expansions of T1, T2, and T3 starting at T1ðeÞ.
Proof. Let T1, T2, and T3 be three unrooted binary trees where T1

and T2 are NNI neighbors and where T2 and T3 are NNI

neighbors. Let ed12
be the edge of difference between T1 and T2,

and let ed23
be the edge of difference between T2 and T3. Let the

expansion of a subtree, S, in an n-leaf tree, T , be the union of
the expansions of the edges in S.

Let e be an edge in T1. We will construct a walk that
traverses, exactly once, every tree in the union of the expansions
of T1, T2, and T3. The location of e, whose expansion, T1ðeÞ, is
the starting point, determines our strategy for building the
Hamiltonian path. Denote by A and B the subtrees that result
from removing e (but not its endpoints) from T1. If one of the
subtrees, say A, is identical across T1, T2, and T3, then neither
ed12

nor ed23
is in A, and by Lemma 4, there is a Hamiltonian

path across the union of the expansions of A1, A2, and A3,
beginning at e in T1 and ending at e in Ti, where i ¼ 2 or 3. So,
assume that neither A nor B is identical across all trees. We
proceed by cases on the relative locations of the edges of
difference, ed12

or ed23
, to e:

Case I. Assume that ed12
is on the path between e and ed23

(that is, ed12
is the “closer” edge of difference to e). Let e1; . . . ; em

be the path between e and ed12
in T1, and let S1; S2; . . . ; Sm�1 be

the subtrees along the path. By hypothesis, the subtrees,
S1; S2; . . . ; Sm�1, occur in all three trees. We apply Lemma 4 to
each of the subtrees and link the resulting paths by visiting the
expansion of the subtree, Si, followed by the expansion of the
path edge, eiþ1, in T1, T2, and T3, for each i, creating a path that
extends to T2ðed12

Þ or T3ðed12
Þ.

We may assume that our path thus far ends at T3ðed12
Þ. Let C

denote the subtree, identical in T1; T2, and T3, that we have
traversed thus far. The root edge of C is incident with ed12

. Let D
be the subtree whose root edge is incident with C in T2 and T3

(that is, C and D are on the “same side” of ed12
in T2 and T3) and

let F and G be the remaining subtrees whose root edges are
incident with ed12

in T2 and T3 (that is, F and G are on the
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Fig. 4. Left: Base Case I for Lemma 4. The labels on the arrows and subtrees
indicate the order of the traversal. Sx is a rooted cherry that is the same across T1,
T2, and T3. Note that, the path through the expansions of the edges in Sx can be
notated as a series of NNI moves, moving the leaf added in the expansions
through the various edges in Sx Right: The three walks show that a Hamiltonian
path can start at TiðpiÞ and end on TjðpjÞ where i 6¼ j.



“opposite side” of ed12
from C and D in T2 and T3). Since the

root edges, rC and rD, of C and D are adjacent in T3, we can
move from T3ðrCÞ to T3ðrDÞ without having to traverse the
expansion of ed12

(that traversal is optional). If D does not
contain ed23

, it is identical across all three trees and we can apply
Lemma 4 to yield an extension of our path that traverses the
union of the expansions of all three copies of D, ending in T1.

T1 differs from T3 around ed12
, so the root edge ofC in T1 is not

incident withD, but with one of the other two subtrees, say F . To
simplify the argument, we will assume that F does not contain
the edge ed23

(if F does contain ed23
, the proof follows by a slightly

more complicated, but similar, argument). We can similarly
extend our path to the union of the expansions of the subtree F
in T1, T2, and T3, ending in T3. In addition, because D and F are
on “opposite sides” of ed12

in T1, our path must first visit T1ðed12
Þ.

We now have a path that traverses the expansion of three

out of four of the subtrees whose root edges are incident with

ed12
and T1ðed12

Þ. To reach the final of the four subtrees, G, we

cross T3ðed12
Þ, then T2ðed12

Þ. From there, we visit the expansion

of the root edge of G, which we traverse by an argument similar

to the one above. We note that if D, above, had contained ed23
,

then we would use the argument for traversing T1ðed12
Þ, T2ðed12

Þ,
and T3ðed12

Þ to traverse T1ðed23
Þ, T2ðed23

Þ, and T3ðed23
Þ. Once we

have traversed the expansion of the three copies of G, we have a

path that visits all the edges of T1, T2, and T3, and thus all trees

in the union of the expansions of those trees.

Case II. We must also consider the case where e lies on the

path between the edges of differences, ed12
and ed23

. While

the argument for this case is similar to that above, there is the

additional difficulty of “starting in the middle.” It is necessary

to traverse the path from e to ed12
and still have unvisited edges

upon which to return so that the “other side” of e can also be

visited. This can be accomplished by traversing only the path

edges (and none of the attached subtrees) in the tree T1 until the

edge of difference is reached. The path is then built, as above,

but on the return, the subtrees on the path are linked by visits to

the path edges in only T2 and T3. Once that section of the

expansions of the trees has been visited, the remaining trees in

the union of the expansions are visited (namely the union of the

expansion of B where B is the subtree resulting from removing

e and that contains ed23
). The result is a Hamiltonian path of the

union of the expansions of T1, T2, and T3.
Case III. Note the special case where ed12

¼ ed23
. In this case,

T1 and T2 are NNI neighbors, T2 and T3 are NNI neighbors, and
T1 and T3 are NNI neighbors. Such a case is a simplified version
of the previous cases, and thus is covered above. tu

Theorem 1. For all n, there exists a Hamiltonian path through the n-leaf
NNI treespace.

Proof. By induction on n, the number of leaves.
Base Case. When n ¼ 4, ð2n� 5Þ!! ¼ 3. Let the four leaves be a,

b, c, and d. Then, without loss of generality, ed in T1 separates a; b
from c; d; in T2 ed separates a; c from b; d; and in T3 ed separates
a; d from b; c. T1 and T2 are NNI neighbors, and T2 and T3 are
NNI neighbors. By the previous lemma, there is a Hamiltonian
path through the four-leaf NNI treespace (see Fig. 1).

Inductive step. Assume there is a Hamiltonian path through
the n-leaf NNI treespace. The walk visits the ordered set
of trees, T1; T2; T3; . . .Tð2n�5Þ!!. By the definition of a Hamiltonian
path, Tx and Txþ1 are NNI neighbors where 1 � x < ð2n� 5Þ!!.

By the previous lemma, the union of the expansions of the
triplet Ty, Tyþ1, and Tyþ2 has a Hamiltonian path, where y ¼
3z� 2 and 1 � z � 1

3 ð2n� 5Þ!!.
Because ð2n� 5Þ!! is divisible by 3 when n � 4, there is

an ordered set of successive triplets, R1; R2; . . . ; Rð2n�5Þ!!
3

, whereR1

is the triplet of trees T1; T2; T3, and Rð2n�5Þ!!
3

is the triplet
Tð2n�5Þ!!�2; Tð2n�5Þ!!�1; Tð2n�5Þ!!. The unions of expansions on each
of these triplets have a Hamiltonian path.

Consider Ty, the third tree in triplet Rv, and Tyþ1, the first
tree in Rvþ1. Ty and Tyþ1 are NNI neighbors. Then, by Lemma 3,
TyðeÞ, where e is not ed, is an NNI neighbor of TYþ1ðeÞ. The end
of the Hamiltonian path through an expansion of a triplet can
thus be connected to the beginning of the Hamiltonian path
through the expansion of the succeeding triplet. As shown
above, there is an ordered set of triplets which covers n-leaf
treespace with a Hamiltonian path. The expansions of each of
these triplets have a Hamiltonian path, and each of the walks
can be linked by a single NNI move. Therefore, a Hamiltonian
path exists through the ðnþ 1Þ-leaf NNI treespace. tu

4 CONCLUSION

We have shown that the shortest walk on the space of binary
phylogenetic trees with n leaves under the NNI metric is a
Hamiltonian path. Since visiting each node exactly once is the
minimal path length possible, this answers Bryant’s first combi-
natorial challenge on the length of the shortest walk of trees under
the NNI metric. In addition, since every NNI move can be
simulated by an SPR or TBR move, this also gives an alternative
proof to the Hamiltonian paths of SPR and TBR treespace [5]. Our
iterative approach to building a Hamiltonian path for the space of
trees with nþ 1 leaves from a path of the smaller space of trees
with n leaves does not yield an algorithm for producing a
Hamiltonian path directly nor do we see an obvious way to do this.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
thoughtful and helpful comments, which greatly improved this
paper. For spirited discussions, the authors thank the members of
the Treespace Working Group at CUNY: Alan Joseph Caceres, Ann
Marie Alcocer, Kadian Brown, Juan Castillo, Samantha Daley, John
DeJesus, Michael Hintze, Daniele Ippolito, Jinnie Lee, Joan Marc,
Oliver Mendez, Diquan Moore, and Rachel Spratt. This work was
supported by grants from the US National Science Foundation
programs in mathematical biology and computational mathe-
matics (NSF #09-20920) and the New York City Louis Stokes
Alliance for Minority Participation in Research (NSF #07-03449).

REFERENCES

[1] B.L. Allen and M. Steel, “Subtree Transfer Operations and Their Induced
Metrics on Evolutionary Trees,” Annals of Combinatorics, vol. 5, no. 1, pp. 1-
15, 2001.

[2] D. Bryant, “Penny Ante: A Mathematical Challenge,” http://www.
math.canterbury.ac.nz/bio/events/kaikoura09/penny.shtml, 2008.

[3] A.J.J. Caceres, J. DeJesus, M. Hintze, D. Moore, and K. St. John, “Walks in
Phylogenetic Treespace,” Information Processing Letters, vol. 111, pp. 600-
604, 2011.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to
Algorithms, second ed., MIT Press, 2001.

[5] L. Foulds and R. Graham, “The Steiner Problem in Phylogeny is NP-
Complete,” Advances in Applied Math., vol. 3, no. 1, pp. 43-49, 1982.

[6] D. Robinson, “Comparison of Labeled Trees with Valency Three,”
J. Combinatorial Theory, Series B, vol. 11, no. 2, pp. 105-119, 1971.

[7] S. Roch, “A Short Proof That Phylogenetic Tree Reconstruction by
Maximum Likelihood is Hard,” IEEE/ACM Trans. Computational Biology
and Bioinformatics, vol. 3, no. 1, pp. 92-94, Jan. 2006.

[8] C. Semple and M. Steel, Phylogenetics, Oxford Lecture Series in Math. and
Its Applications, vol. 24, Oxford Univ. Press, 2003.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 4, JULY/AUGUST 2013 1079



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


