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Abstract— Routing packet traffic through a chain of hosts is a 

common technique for hackers to attack a victim server without 

exposing themselves. Generally, the use of a long connection chain 

to log in to a computer system is an indication of the presence of an 

intruder. This paper presents a new solution to the problem of 

detecting such long connection chains at the server side. Our 

hypothesis is that a long connection chain will cause Request and 

Response packets to cross each other along the chain. So even 

though we cannot directly observe the packet crossovers from the 

server side, we can observe some of their side effects. Thus, our 

detection algorithm is based on detecting this side effect of packet 

crossovers. We validated the algorithm using test data generated on 

the Internet. The results show a high detection rate of long 

connection chains of length three hops with a reasonable false 

positive rate. 

Keywords— intrusion detection; stepping-stone attacks; packet 

crossovers; long connection chain 

I. INTRODUCTION 

Cyber security has always been an important issue for the 
military and homeland security. One the consumer side, cyber 
attacks against businesses reached a new peak in 2014. Internet 
security is required in order to prevent hackers from stealing 
information or damaging government, corporation, and 
personal computers. Even though many measures have been 
deployed to prevent hackers from computer server intrusion, 
there are news reports about stolen data affecting millions 
almost weekly. For example, servers at LinkedIn were 
compromised and 6.5 million user passwords were stolen in 
2012 [1]. In 2011, Sony PlayStation suffered from 24 days of 
network outage due to intrusions, which cost Sony a $171 
million loss. The attack continued for 3 days, and Sony had to 
turn off the PlayStation Network for maintenance [2] [3].  
More recent data losses include Home Depot, Sony 
Entertainment, Target, and other US retailers. 

There are many different ways of attacking a computer on 
the Internet. Since network communication is divided into a 7-
layer OSI model [17], each layer is vulnerable to attack. This 
research project focuses on the application layer, where the 
Secure Shell (SSH) protocol resides. A number of attacks can 
happen at this level, such as Denial of Service (DoS), SQL 
Injection, and Man-in-the-Middle attacks. Our goal is to detect 
hackers who try to tamper with a system after logging in to the 
system via an SSH server. We also assume the hackers will not 

spoof the IP address, because they need to receive information 
from the targeted server. In order to avoid detection, most 
intruders route through a long chain of previously 
compromised intermediate hosts, called stepping-stones, before 
logging in to a target server.  

Stepping-stone intrusion is widely used by hackers to stay 
anonymous and to avoid trace backs. These stepping-stone 
hosts are usually picked by intruders and may be located in 
different countries. Therefore, it would be extremely difficult 
to trace back to the original attacker without the assistance of 
system administrators from all these intermediate hosts in real-
time.  

We can break up such attacks by identifying them 
anywhere along this chain of stepping-stone hosts. One such 
place is at a stepping-stone while the hackers are connected [4]. 
There have been many publications focusing on this area in the 
past two decades. Staniford-Chen and Heberlein [5] wrote the 
first paper addressing this issue. Without bothering the 
intermediate hosts, the paper proposed a method that helps to 
flag suspicious activities, maintains logs in the case of an 
intrusion from local sites and sets up connections through 
external nodes. Their approach also helps to enforce policies in 
terms of cross-traffic, and to detect insecure combinations of 
legitimate connections. 

Previous research primarily concentrated on intermediate 
host-based stepping-stone detections, i. e., detecting stepping-
stones by correlating streams of packet traffic. From the view 
of an intermediate host, the data generated by an attacker are 
sent downstream, and a response from the server (target host) 
is passed backward upstream to the attacker. The 
request/response packets form a closed loop between an 
intermediate host and the target server. Meanwhile, the time 
difference between the request and the response is captured for 
detection. Yang and Huang [6] used time gaps in the closed 
loop to detect a downstream connection chain in real time. 
They aimed to stand between the attacker and victim, in order 
toprotect the target host; this is usually a third party connected 
by a long chain originating from a hacker. However, most of 
the time we do not have privilege on intermediate hosts in a 
long chain. It would be extremely helpful to be able to detect 
intruders and avoid being compromised at the target host. 
There is no straightforward method that is able to measure the 
full Round Trip Time (RTT) from a target to a hacker. Since 



 

SSH is an interactive terminal session, the client’s machine 
will not automatically send a reply back to the server for 
anyone to compute the RTT. The responses that the server 
received are generated from the nearest node on the connection 
chain.  

Li, Zhou and Wang [18] devised a novel real-time RTT 
calculation algorithm for stepping-stone attacks based on the 
estimation of the current RTT value. The authors show that this 
is more precise than the previous real-time RTT algorithms. 

Ding et al. [7] proposed an intrusion detection algorithm at 
the targeted server, which is at the end of the connection chain 
shown in Figure 1 above. As presented in Figure 1, the 
neighboring hosts directly connected to the target server are the 
only machines visible to the victim (using IP addresses on the 
packets). The rest of the hosts in the chain are beyond the 
visibility of the target server. Ding et al.'s goal was to detect 
and prevent suspicious stepping-stone connection chains by 
using an anomaly-based algorithm.  They first built a profile of 
short connection chains using inter-packet gaps.  If an SSH 
connection deviates too much from this normal profile, it is 
considered a long chain and is thus suspicious. 

Ding et al.'s approach is to compute the difference in 
distribution of the packet gaps. Their hypothesis is that the 
longer the connection chain is, the larger the gaps are.  In their 
experiments to validate their hypothesis, 4-hop and 6-hop 
connection chains were compared to short connection chains of 
1-hop. The results show that the algorithm works, as 86% of 
long connection chains were identified, with a false positive 
rate of around 13% in the case of 6-hop chains.  The accuracy 
for the 4-hop chains is less impressive. 

The goal of this project is to improve the accuracy rate of 
detecting long connection chains based on such previous work 
[7].  To their credit, the authors discovered the “packet 
crossovers” in long connection chains, even though they did 
not find a way to use that observation to detect long connection 
chains. The authors also suggested that longer connection 
chains should cause more packet crossovers.  Our paper makes 
the same assumption of the existence of these packet 
crossovers and uses this assumption to identify long 
connections.  Thus, building on previous work, we are able to 
detect network intruders with better precision. 

The rest of this paper is organized into four sections. 
Section 2 gives definitions of network security, intrusion 
detection, stepping-stones, and presents other related work. 
Section 3 presents the issue of packet crossover and its 
relationship with the length of the connection chain. Section 4 
shows our new detection algorithm to identify long connection 
chains from short ones. The final section summarizes our work 
on stepping-stones detection. 

II. LITERATURE SURVEY AND DEFINITIONS 

In this section, we briefly review current research in 
stepping-stone intrusion detection.  

2.1 Definitions and Assumptions 

Network security has been a research topic for decades 
[7][8][9][10]. Intrusion detection provides a network, as well 
as resources that are stored in the network, accessible device 
protection from intruders attemping to steal information. 
Authentication can be deployed as the first step in the defense 
of network security. Username and password can be to 
authorize users into the system. There are also other 
authentication mechanisms such as tokens, fingerprints, and 
retina recognition.  

Secure Shell (SSH) is a cryptographic network protocol for 
securing data communication, remote command-line login, 
remote command execution, and other secure network services 
between two networked computers. It connects via a secure 
channel over an insecure network, with a server and a client 
running SSH server and SSH client programs, respectively 
[16]. Although the data field of an SSH packet is encrypted, the 
header fields of a packet are given in plain text. This plain text 
header can reveal information such as the type of packet, the 
source/destination IP, and the size of a packet.  

Stepping-stones are a typical way for a hacker to hide his 
identity. Using stepping-stones makes tracking the IP address 
of an intruder difficult, since these stepping-stones may be 
located in different countries. A hacker may log in to a 
stepping-stone computer and start a new connection to another 
computer from this machine and do the same thing repeatedly. 
Those intermediate stepping-stones computers form a 
connection chain. Anytime such long chains are detected, it is a 
sign that someone may be trying to intrude into a system and 
conceal their activities.  This is the type of intruder that we are 
trying to detect and prevent. 

During a connection with SSH, each client’s keystrokes 
generate a request packet, sometimes called “send packet”; 
Upon receipt, the server sends one or more response packets, 
sometimes called “echo packets” back to the client, which 
appear in the client’s terminal window.  

Ideally, the client host sends out the next request after 
receiving the response packet(s) from the previous request. 
However, this significantly slows down communication 
between the client and the server.  To speed up 
communication, the TCP/IP protocol allows the client host to 
send out the request packets before receiving responses, up to a 
limit determined by the size of a buffer. In these cases, the 
request packet will “meet” the incoming response packet 
halfway. We call this situation “crossover”. Every time a 



 

request packet meets a response packet, one crossover is 
counted. 

In summary, the type of intrusion that we discuss in this 
paper has the following characteristics: (1) the intruder must 
log in to a target host in order to steal information or cause 
other damage to that system and (2) the data content of the 
connection may be encrypted and not visible to any detection 
algorithm.  Denial of service (DoS) attacks, for example, do 
not fall under this category. 

2.2 Previous Work 

There have been quite a few studies focused on stepping-
stone detection, which have used various techniques to 
discover the hosts used by a hacker to avoid tracing. For each 
stepping-stone host, there may be a number of incoming and 
outgoing SSH connections. If the packet pattern of an 
incoming connection and that of an outgoing connection are 
highly correlated, that host is certainly suspicious.  

Staniford-Chen and Heberlein [5] are the pioneers in the 
stepping-stone detection area. Their early research was based 
on the content of captured packets. Thumbprints are short 
summaries of connection packets captured in cross-traffic. 
They compared thumbprints to determine whether the bi-
directional packets contain the same content. If so, the host is 
likely to be an intermediate node in a long connection chain. 
However, this method is only able to detect stepping-stones 
using unencrypted messages, such as on a Telnet connection. 
The algorithm cannot be applied when dealing with encrypted 
connections such as SSH.  

Wang and Reeves [11] proposed a novel intrusion 
framework called “Sleepy Watermark Tracing" (SWT). It 
integrated a sleepy intrusion response scheme, a watermark 
correlation technique, and an active tracing protocol. The term 
“sleepy” refers to the fact that no overhead is introduced when 
no intrusion is detected, but the overhead becomes active when 
detecting an intrusion. The target host will inject a watermark 
into the backward connection of the intrusion, and then wake 
up to collaborate with routers along the chain. Wang and 
Reeves’ work is quite inspiring, since they made it possible to 
trace back to the original source node in real time when a 
hacker uses a long chain to cover their presence in order to 
achieve interactive intrusion. 

Due to its protection of privacy, SSH is gradually becoming 
the most useful remote connection tool over Telnet. In order to 
adapt to new ways of connection, Zhang and Paxson [4] 
proposed a method using timing correlation of ON/OFF 
periods of different connections to detect stepping-stone 
attacks. Because they rely on the properties of interactive 
traffic, such as packet sizes and idle periods, they do not need 
to look at packet contents on the connections in order to detect 
intrusions. Their algorithm provides good accuracy and 
reduced workload in capturing packets by only keeping packet 
headers. However, there is still a weakness in their approach: it 
cannot distinguish legitimate stepping-stones from malicious 
ones.  

Yung’s research [12] focused on estimating the RTT for 
outgoing connections using request-and-response pairs 
between a client and a downstream server. Yung’s approach 

monitors an outgoing connection to estimate two metrics. The 
first metric is the time gap between requests from the client and 
acknowledgements from the downstream server, which is used 
to estimate the RTT between the client and the server. The 
second metric is the time gap between the client’s request and 
the server’s response, which is used to estimate how far away 
the targeted server is. These two metrics are also used to 
estimate how many hops there are on the connection chain 
from hacker to victim. This method performs well in 
identifying connections with more than two downstream hops 
and can be used on interactive sessions, such as Telnet and 
SSH. However, the time gaps are greatly influenced by the 
network environment and the end machine, since any delay in 
network traffic or on the server side could impact the size of 
the RTT. 

Yang and Huang [6] proposed an algorithm to estimate the 
length of downstream connection chains by monitoring 
outgoing and incoming packets. Their algorithm computes the 
RTT in a request and response pair. By capturing the changes 
in these RTTs, the number of nodes in the downstream chain 
can be estimated. With this approach, the user can determine if 
his machine is being used as a stepping-stone when the hacker 
is connected to a target server, and then take measures to stop 
the intrusion. This method is able to detect intrusion in real-
time, which is important. It also delivers an accurate result for 
estimating the length of a downstream connection chain. 

After Yang and Huang’s work [6], they proposed two 
additional algorithms [13] for matching TCP send-and-echo 
packets. One algorithm is relatively conservative, and can 
accurately match a smaller number of packets, whereas the 
other one is heuristic, and can match a larger number of 
packets with less accuracy. The authors justified the 
correctness of their conservative algorithm. By applying these 
two algorithms in their experiments, results show that both 
algorithms could achieve the same performance. If the 
conservative algorithm failed to generate enough data, the 
heuristic one would be used as a supplement. The combined 
algorithms can detect intruders in real-time. This approach can 
also estimate an encrypted connection chain length accurately, 
even with fluctuating network traffic. The major weakness of 
this approach is that it requires capturing packets throughout a 
given connection session.  Since previous research [13] was 
not able to capture enough send packets using a conservative 
algorithm, Yang and Huang [14] proposed a new clustering 
partitioning algorithm to extract the timestamps from the send-
and-echo packets in a connection chain.  

Ding et al. [7] continued detection work from another 
perspective by proposing an intrusion detection algorithm 
based on the target host at the end of a chain, instead of on the 
intermediate host. They analyzed the delay between the time a 
user presses the enter button to finish a Unix command and the 
time that the user types the next character, and used an 
approximated upstream round-trip time to separate long 
connection chains from short ones. Their results show that this 
proposed algorithm is able to distinguish long from short 
connection chains with relatively low false positive rate under 
certain conditions.  Our paper attempts to find a better 
detection algorithm under the same assumptions. 



 

III. PACKET CROSSOVERS IN THE CONNECTION CHAIN 

Ding et al. [7] discovered the “crossover” issue in their 
examination of long connection chain packets. In this section 
we discuss the relationship between the number of crossovers 
and the length of a given connection chain.  Throughout this 
paper, we will be using the following setup as our test 
environment.  Our main goal is to distinguish and identify long 
connection chains from short connection chains.  The length of 
a short chain is obviously where length equals 1 hop.  One hop 
is defined as one connection between an SSH client and an 
SSH server.  The length of a long chain in our experiment was 
set at 3 hops.  The four servers used to create a 3-hop 
connection chain are shown in Figure 2. All three hops were 
routed on the Internet, not on our campus LAN. Note that we 
collected all packets at all four nodes for this experiment, but 
only used the data at the target host in Georgia for the detection 
analysis.  The other data have been saved for future analysis.  
For the data in short chains, a connection was created between 
the University of Houston and Pittsburg. 

Each time a user on the client-side presses a key, the client 
host generates a request packet with the padded and encrypted 
character as the content for the next server. The server sends a 
response packet back to the client after processing the request 
packet. If the server is an intermediate stepping-stone host, it 
turns around and sends the request via a separate packet to the 
next SSH server and waits for its response.  If the server is the 
intended target host, then the host processes the request, which 
includes sending a response packet back with the same 
character in it. Occasionally, if a complete command has been 
received at the server side, the server sends one or more 
packets back with the reply. Thus RTT can be measured in the 
first host by computing the difference between the timestamps 
of the request and response packets.  The first two 
communications in Figure 3 illustrate how such an RTT can be 
computed.  Note that the processing time at the end of the 
chain is typically very small. A server may also send an 
acknowledgement packet if no response is ready to be sent. 
When the user closes the connection, the server process 
terminates, and the auxiliary server continues to listen for new 
SSH connection requests [15].  

According to the TCP/IP protocol, a client is allowed to 
send a limited number of packets to the server without having 
to wait for a response. The packet RTT for different request 
packets will be different.  This can be modeled as a random 

variable, depending on network traffic and the availability of 
the hosts involved. Normally, request and response packets 
stay in the same sequence at both ends of the connection. Also, 
RTTs between two consecutive hosts are much shorter than 
intervals between manual keystrokes. 

We then formally define packet crossovers and state our 
assumptions about the crossovers.  When TCP/IP services are 
started on an SSH server host, the auxiliary server creates a 
listening socket for the SSH, enabling it to accept a remote 
connection request. When the client executes an SSH 
command on a remote client host, the SSH client is initiated. 
The client reads the configuration file and initiates a TCP 
connection to a server host using the specified destination port. 
On an SSH server host, the auxiliary server creates a copy of 
the server process, which reads the server's configuration file. 
The SSH client and server exchange information about 
supported protocol versions. During the connection, the SSH 
server runs in a loop, accepting request messages from the 
client, performing required actions, and returning response 
messages to the client. For a stepping-stone type of connection, 
there is a different packet between every pair of successive 
hosts in a chain.   

If a connection chain is long enough, the round-trip time of 
a packet may be longer than intervals between two consecutive 
keystrokes. For data transfer, the client is allowed to send 
further messages, subject to a limit, without waiting for the 
response to the request [16]. Therefore, if the client’s keystroke 
intervals are longer than the RTT, the response packet will 
arrive at the client’s machine before another request is sent out. 
On the other hand, if the client’s keystroke intervals are shorter 
than the round-trip time of the previous packet, there will be 
two or more consecutive request packets sent before a response 
packet arrives. Thus, the probability that an RTT is greater than 
the key intervals is higher in a long connection chain. When a 
response packet arrives at the client’s machine later than 
another request packet is sent out, this response packet will 
“meet” the coming request packet halfway before arrival, 
which is called “crossover.”  Two crossovers are shown in 
Figure 3. 

Crossover of the request and response packets requires 
more explanation.  When a packet “crossover” happens, the 
downstream node stays in the normal request/response packet 
order, whereas the upstream node sends out the next request 



 

packet before receiving a response packet for the previous one. 
Then at the upstream node, there will be two consecutive 
request packets whose sequence is different from those at the 
downstream node.  

The rest of this paper is based upon the assumption that 
there are more crossovers generated in a long connection chain 
than in a short one. In other words, the longer a connection 
chain is, the more crossovers there are, which means the 
number of packet crossovers is positively correlated to the 
length of the connection chain. We plan to validate this 
crossover assumption in a separate work. 

IV. DETECTION OF LONG CONNECTION CHAINS 

The existence of the packet crossover and its relationship 
with the chain length provided a base for our algorithm.  
Although we made the assumption that a high number of 
crossovers implies a long connection chain, we were unable to 
use this to identify long connection chains, because of the lack 
of packet information. We did not have packet information 
along the whole chain, except for the last host where the 
monitoring algorithm resides (Figure 1). Nevertheless, a large 
number of crossover packets will alter the distribution of 
packet gaps.  This section describes an algorithm that captures 
those gap variances resulting from a large number of packet 
crossovers. With this algorithm, it is possible to distinguish and 
identify long connection chains from shorter chains. 

A reasonable way to approximate the chain length is by 
using the RTT. However, the monitoring algorithm is unable to 
calculate the RTT when the algorithm is located at the target 
server. The best we can do is an Upstream RTT (uRTT), which 
is defined as the time gap between sending a respnose packet 
and the receiving of the next request packet at the target server 
An example is provided of RTT and uRTT in Figure 3. The 
uRTT in general does not represent the real RTT because there 
is potentially a delay before the next request packet is sent. An 
example of uRTT is shown in Figure 3; it is the difference 
between the timestamps of a response packet and that of the 
next request packet received at the target server.  

Even though uRTTs are not very accurate in general, we 
were hoping that one of them would provide a good estimation 
of the true RTT. This is possible when the client queues the 
key strokes pending the reply packets. So we looked at the 
minimum of all uRTTs, and we were surprised by some of the 
values, as some were much smaller than what real RTTs 
should be.  It turned out that the problem was caused by the 
packet crossovers, particularly in a long connection chain.  For 
example, if we compute the uRTT of the second pair of 
timestamps at Host 4, the uRTT2 is much smaller than RTT or 
the first uRTT1 in Figure 3.  The reason for this difference  is 
precisely due to the crossover of a response packet (Echo 2) 
with a Request packet (Send 3). 

We can classify all the uRTT gaps into two types: “Inter-
command Gap” and “Intra-command Gap” [7]. Each operating 
system command is usually followed by an “Enter” key. Inter-
command Gap refers to the time gaps between a return 
character and the first character of the next Unix command 
entered by the user. Intra-command Gap refers to the time gaps 

between two keystrokes within a single command, i.e., with no 
return or end-of-line characters.  

The reason for separating Inter- and Intra-command Gaps is 
to filter out some of the packet gaps that are not contributing to 
our detection algorithms.  The Intra-command Gaps essentially 
measure the typing speed of a user and do not depend on the 
length of the chain. On the other hand, Inter-command Gaps 
may be influenced by the chain length. The user may have to 
digest the result from the prior command to determine what to 
do next. An algorithm was presented in [7] to filter out Intra-
command Gaps. The Inter-command Gaps are used to build a 
profile characterizing a given connection chain. 

From our experiments, we conclude that long connection 
chains will generate a number of packet crossovers. Even 
though we do not have solid numbers to support this claim, 
from our observations, the number of crossovers is 
proportional to the length of the connection chain.  These 
crossovers resulted in some relatively small Inter-command 
Gaps that were smaller than the actual RTT. Thus, if there are 
an unusual number of small Inter-command Gaps, it is highly 
likely to be a long connection chain.   

Figure 4 shows two sample “profiles” of Inter-command 
Gaps, one for a 1-hop chain and the other for a 3-hop chain. 
The profile is sorted in ascending order of the gap values after 
filtering out the Intra-command Gaps. In general, the gap 
values are higher for the longer chain. However, the gap values 
dropped at the beginning of the profile for the long chain, i. e., 
there are some very small uRTTs for the long chain, visible in 
the two curves in Figure 4.  This dip happened in all 20 long 
chain cases that we tested.  On the other hand, there is no 
significant dip for the short chain, represented by the dotted 
curve in Figure 4. Consequently we can view the existence of 
very small uRTTs as a signature for a long chain. 
Unfortunately, we cannot measure the packet crossover by only 
examining the packets at the target server.  We are able to 
observe a side-effect of the dip in the profile. After the first few 
very small uRTTs, the gap value has to increase to their 
normal, higher value.  So, there is a sharp rise in the gap values 
in the profile. 

 



 

We then reduced the problem of finding a long connection 
chain to finding a sharp rise in the profile of its Inter-command 
Gaps. There are two ways to measure the “sharp rise” of a 
curve: (a) measure the difference of the successive gaps and 
look for the largest difference, or (b) measure the ratio of two 
successive gaps and look for the largest ratio. Both of these 
methods were tested and the ratio approach turned out to be the 
better method. An algorithm to find a long connection chain is 
shown below. In the algorithm, we computed the ratio of two 
successive gaps as a measurement of the sharpness of the rise 
of the profile.  If the largest rise in the ratio is higher than a 
threshold value, the algorithm returns “long connection chain”. 

Detection Algorithm: to determine whether the connection 
chain is a long or short one, given all the packet 
information at a target server. 

Step 1: Extract request/response SSH packets from data 
collected at the targeted server of the selected 
connection. 

Step 2: Compute the uRTT gaps of successive packets 
and sort them in ascending order. 

Step 3: Filter out the Intra-command Gaps and keep 
only the Inter-command Gaps G[i] sorted in 
ascending order. 

Step 4: Compute the ratios of successive gaps over their 
previous ones, R[i] = G[i]/G[i-1]. (An alternative 
is to find the difference of the two gaps.) 

Step 5: Find the maximum gap ratio  
              mgr =                    
and if this maximum ratio mgr is greater than a 
predetermined threshold t, it is considered to be 
a long connection chain. Otherwise, it is a short 
one. 

The above algorithm did not specify what threshold value 
to use, because there is no universal threshold that can be used 
in all situations.  Each installation should conduct its own 
experiment and derive the best threshold to use for that server.  
We shall describe the algorithm to find such a threshold below.  
There is an obvious trade-off between the accuracy of our 
ability to detect long connection chains (lower t value) and the 
false positive rate.   

V. VALIDATION OF THE ALGORITHM 

To validate the algorithm, we designed an experiment to 
compare long connection chains with short connection chains. 
The experiment was conducted over the Internet starting from 
the University of Houston (UH) campus. A short chain is 
defined as one single connection (1-hop) from our campus to a 
host off-campus.  A long connection is defined as a 3-hop 
chain, i. e., a chain of 4 hosts connected with three connections. 
All intermediate stepping-stone hosts are located within the 
U.S., but are not geographically close to our campus.  A total 
of 20 short chains and 20 long chains were collected for our 
analysis. 

To illustrate how the algorithm works, we shall look at 
some selected sample profiles.  Table I presents three of the 
twenty long-connection cases tested. For each case, we listed 

the Inter-command Gaps and the gap ratio computed in Step 4 
of the algorithm.  

Due to the packet crossovers, the first few gaps in the 
profiles for long chains are very small; thus, it is easier for us 
to identify the sharp increase in the gap ratio.  As one can see, 
there is one ratio in bold that stands out among all of the ratios 
in each of the three cases. The first two cases are the typical 
cases from the experiments, while Case 3 is the worst case, i. 
e., the profile with the lowest mgr value among all twenty test 
cases. Note that we only listed the first fifteen values of the 
profile to save space.  Showing more values does not give 
more insight into how the algorithm works. 

TABLE I.  THREE CASES OF RATIOS OF CONSECUTIVE GAPS AMONG 

TWENTY LONG CONNECTION CHAINS COLLECTED IN OUR EXPERIMENTS  
(CHAIN LENGTH = 3 HOPS).  

 Case 1 Case 2 Case 3 

Gap Ratio Gap Ratio Gap Ratio 

1 0.045  0.020  0.043  

2 0.046 1.022 0.043 2.190 0.045 1.030 

3 0.046 1.001 0.044 1.021 0.045 1.003 

4 0.047 1.021 0.045 1.020 0.045 1.001 

5 0.512 10.972 0.045 1.005 0.069 1.550 

6 0.520 1.017 0.551 12.138 0.073 1.054 

7 0.523 1.005 0.553 1.004 0.190 2.604 

8 0.551 1.053 0.686 1.241 0.354 1.863 

9 0.591 1.073 0.690 1.005 0.459 1.295 

10 0.651 1.103 0.724 1.049 0.473 1.031 

11 0.655 1.005 0.734 1.014 0.527 1.114 

12 0.660 1.009 0.765 1.042 0.554 1.050 

13 0.672 1.017 0.798 1.043 0.613 1.108 

14 0.698 1.039 0.851 1.067 0.637 1.039 

15 0.700 1.003 0.855 1.004 0.660 1.036 

 

We did a similar analysis for short connection chains, as 
illustrated in Table II. The ratios for the short chains were 
supposed to be low, but we did see some outlier values, as 
shown in Case 3, which is, again, the worst case of the twenty 
short connection chains. The reason for this very strange worst 
case is unknown.  However, for most of the cases, the mgr for 
the short chains, highlighted in Table II, is smaller than those 
of the long chains. We can use this as a feature to separate the 
two cases. 

The algorithm then took the forty mgr numbers, mixed 
them together, and sorted them in ascending order. As shown 
in Figure 5, most short chain (blue circles) and long chain (red 
squares) data points stay in the lower part and the upper part of 
the chart, respectively. Figure 5 may be used to evaluate the 
accuracy of our algorithm.  For example, if we select the 
threshold t to be 6.0, then there is one short chain misclassified: 
the only blue circle above 6.0, which is a false positive. At the 
same time, there are three long connection chains that we were 
unable to detect, or three false negative cases.  The system 
administrator at the target server can determine the threshold 
value depending on the false rate he/she is willing to tolerate. 

 



 

TABLE II.  THREE CASES OF RATIOS OF CONSECUTIVE GAPS AMONG 

TWENTY SHORT CONNECTION CHAINS COLLECTED IN OUR EXPERIMENTS 

(CHAIN LENGTH = 1 HOP). 

 Case 1 Case 2 Case 3 

Gap Ratio Gap Ratio Gap Ratio 

1 0.051   0.052   0.050   

2 0.052 1.022 0.052 1.000 0.052 1.035 

3 0.052 1.004 0.055 1.059 0.499 9.558 

4 0.127 2.443 0.127 2.308 0.513 1.027 

5 0.195 1.538 0.241 1.905 0.519 1.012 

6 0.196 1.006 0.260 1.077 0.526 1.014 

7 0.204 1.041 0.283 1.090 0.583 1.108 

8 0.287 1.409 0.310 1.095 0.596 1.023 

9 0.306 1.063 0.339 1.094 0.598 1.003 

10 0.363 1.189 0.350 1.032 0.614 1.027 

11 0.397 1.093 0.372 1.064 0.630 1.026 

12 0.429 1.079 0.388 1.042 0.678 1.076 

13 0.431 1.004 0.469 1.208 0.701 1.033 

14 0.442 1.026 0.510 1.088 0.702 1.003 

15 0.470 1.065 0.533 1.044 0.706 1.005 

 

 

In order to better examine the detection rate of this method, 
we set the ratio threshold at different levels to distinguish long 
connection chains from short ones. For example, if we set the 
ratio threshold as 6, there is only one data point falling into the 
false positive category, which means a false positive ratio of 
5%. Meanwhile, seventeen of the twenty long connection 
chains are correctly detected with a accuracy (true positive) 
rate of 85%.  

In this way, we can generate an ROC (Receiver Operating 
Characteristic) curve with different combinations of false/true 
positive ratios. The ROC curve gives a simple visual 
evaluation of the accuracy and false alarm rate of our method 
in long connection chain detection. Depending on the amount 
of false positives one is willing to tolerate, one can estimate the 
accuracy of the detection algorithm. The ROC curve is 
presented in Figure 6, which turns out to be better than that of 
previous research. Note that in our experiment, the goal was to 
be able to identify long chains of 3 hops vs. 1 hop.  This is 
much more challenging than the prior research which is to 

separate a length of 4 hops vs. a length of 1 hop.  We also 
tested 5 hops vs. 1 hop and the detection rate is 100% with no 
false positives.  That result is not shown here, to save space. 

VI. CONCLUSION 

Cyber attacks through stepping-stones have been widely 
used by hackers to avoid being detected. Stepping-stones 
intrusion detection can effectively prevent the hackers from 
being traced back to their source. It is important for a server to 
be sure that there are no long stepping-stone chains that are 
connecting to it through an SSH server. 

In this paper, we proposed a new approach to detect long 
connection chains based on the hypothesis that the number of 
packet crossovers is approximately proportional to the length 
of a given connection chain. Our approach is able to detect 
connection chains of three hops with a better accuracy than the 
previous research. Our algorithm is based on the sharp rise of 
the Inter-command Gap profile of a chain.  Experiments were 
conducted to validate our algorithm, and for a 3-hop chain we 
were able to detect 85% of the long chains with only a 5% false 
positive rate.  This result is based on a particular threshold we 
picked in the analysis.  The threshold is not arbitrary; it 
depends on each installation of the algorithm depending on 
network speed, among other factors. By studying the training 
cases, each installation can determine a threshold that gives 
them an acceptable False Positive rate.   

Note that this paper did not address the issue of estimating 
packet crossovers.  It remains to be seen if we can collect 
enough evidence to validate the hypothesis about packet 
crossovers.  The strategy proposed in this paper was designed 
for SSH protocol only.  Future work will investigate whether 



 

this method works for other protocols, for example, a chain of 
HTTP or SOCKS proxies.   

Our research helps servers to identify potentially dangerous 
connections by detecting users connecting to a SSH server by 
using long connection chains to hide their identity. The 
algorithm requires packet data at the server, i. e., end of chains 
only. The passive algorithm does not interfere with the 
connection.  In our experiment, we used Wire Shark to collect 
packet data for off-line analysis.  The algorithm may be 
converted to an online real-time monitor algorithm that can 
alert a system administrator during an attack. 
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