

Detecting Stepping-Stone Intruders by Identifying

Crossover Packets in SSH Connections

Shou-Hsuan Stephen Huang, Hongyang Zhang, Michael Phay

Department of Computer Science

University of Houston

Houston, TX, USA

shuang@cs.uh.edu

Abstract— Routing packet traffic through a chain of hosts is a

common technique for hackers to attack a victim server without

exposing themselves. Generally, the use of a long connection chain

to log in to a computer system is an indication of the presence of an

intruder. This paper presents a new solution to the problem of

detecting such long connection chains at the server side. Our

hypothesis is that a long connection chain will cause Request and

Response packets to cross each other along the chain. So even

though we cannot directly observe the packet crossovers from the

server side, we can observe some of their side effects. Thus, our

detection algorithm is based on detecting this side effect of packet

crossovers. We validated the algorithm using test data generated on

the Internet. The results show a high detection rate of long

connection chains of length three hops with a reasonable false

positive rate.

Keywords— intrusion detection; stepping-stone attacks; packet

crossovers; long connection chain

I. INTRODUCTION

Cyber security has always been an important issue for the
military and homeland security. One the consumer side, cyber
attacks against businesses reached a new peak in 2014. Internet
security is required in order to prevent hackers from stealing
information or damaging government, corporation, and
personal computers. Even though many measures have been
deployed to prevent hackers from computer server intrusion,
there are news reports about stolen data affecting millions
almost weekly. For example, servers at LinkedIn were
compromised and 6.5 million user passwords were stolen in
2012 [1]. In 2011, Sony PlayStation suffered from 24 days of
network outage due to intrusions, which cost Sony a $171
million loss. The attack continued for 3 days, and Sony had to
turn off the PlayStation Network for maintenance [2] [3].
More recent data losses include Home Depot, Sony
Entertainment, Target, and other US retailers.

There are many different ways of attacking a computer on
the Internet. Since network communication is divided into a 7-
layer OSI model [17], each layer is vulnerable to attack. This
research project focuses on the application layer, where the
Secure Shell (SSH) protocol resides. A number of attacks can
happen at this level, such as Denial of Service (DoS), SQL
Injection, and Man-in-the-Middle attacks. Our goal is to detect
hackers who try to tamper with a system after logging in to the
system via an SSH server. We also assume the hackers will not

spoof the IP address, because they need to receive information
from the targeted server. In order to avoid detection, most
intruders route through a long chain of previously
compromised intermediate hosts, called stepping-stones, before
logging in to a target server.

Stepping-stone intrusion is widely used by hackers to stay
anonymous and to avoid trace backs. These stepping-stone
hosts are usually picked by intruders and may be located in
different countries. Therefore, it would be extremely difficult
to trace back to the original attacker without the assistance of
system administrators from all these intermediate hosts in real-
time.

We can break up such attacks by identifying them
anywhere along this chain of stepping-stone hosts. One such
place is at a stepping-stone while the hackers are connected [4].
There have been many publications focusing on this area in the
past two decades. Staniford-Chen and Heberlein [5] wrote the
first paper addressing this issue. Without bothering the
intermediate hosts, the paper proposed a method that helps to
flag suspicious activities, maintains logs in the case of an
intrusion from local sites and sets up connections through
external nodes. Their approach also helps to enforce policies in
terms of cross-traffic, and to detect insecure combinations of
legitimate connections.

Previous research primarily concentrated on intermediate
host-based stepping-stone detections, i. e., detecting stepping-
stones by correlating streams of packet traffic. From the view
of an intermediate host, the data generated by an attacker are
sent downstream, and a response from the server (target host)
is passed backward upstream to the attacker. The
request/response packets form a closed loop between an
intermediate host and the target server. Meanwhile, the time
difference between the request and the response is captured for
detection. Yang and Huang [6] used time gaps in the closed
loop to detect a downstream connection chain in real time.
They aimed to stand between the attacker and victim, in order
toprotect the target host; this is usually a third party connected
by a long chain originating from a hacker. However, most of
the time we do not have privilege on intermediate hosts in a
long chain. It would be extremely helpful to be able to detect
intruders and avoid being compromised at the target host.
There is no straightforward method that is able to measure the
full Round Trip Time (RTT) from a target to a hacker. Since

SSH is an interactive terminal session, the client’s machine
will not automatically send a reply back to the server for
anyone to compute the RTT. The responses that the server
received are generated from the nearest node on the connection
chain.

Li, Zhou and Wang [18] devised a novel real-time RTT
calculation algorithm for stepping-stone attacks based on the
estimation of the current RTT value. The authors show that this
is more precise than the previous real-time RTT algorithms.

Ding et al. [7] proposed an intrusion detection algorithm at
the targeted server, which is at the end of the connection chain
shown in Figure 1 above. As presented in Figure 1, the
neighboring hosts directly connected to the target server are the
only machines visible to the victim (using IP addresses on the
packets). The rest of the hosts in the chain are beyond the
visibility of the target server. Ding et al.'s goal was to detect
and prevent suspicious stepping-stone connection chains by
using an anomaly-based algorithm. They first built a profile of
short connection chains using inter-packet gaps. If an SSH
connection deviates too much from this normal profile, it is
considered a long chain and is thus suspicious.

Ding et al.'s approach is to compute the difference in
distribution of the packet gaps. Their hypothesis is that the
longer the connection chain is, the larger the gaps are. In their
experiments to validate their hypothesis, 4-hop and 6-hop
connection chains were compared to short connection chains of
1-hop. The results show that the algorithm works, as 86% of
long connection chains were identified, with a false positive
rate of around 13% in the case of 6-hop chains. The accuracy
for the 4-hop chains is less impressive.

The goal of this project is to improve the accuracy rate of
detecting long connection chains based on such previous work
[7]. To their credit, the authors discovered the “packet
crossovers” in long connection chains, even though they did
not find a way to use that observation to detect long connection
chains. The authors also suggested that longer connection
chains should cause more packet crossovers. Our paper makes
the same assumption of the existence of these packet
crossovers and uses this assumption to identify long
connections. Thus, building on previous work, we are able to
detect network intruders with better precision.

The rest of this paper is organized into four sections.
Section 2 gives definitions of network security, intrusion
detection, stepping-stones, and presents other related work.
Section 3 presents the issue of packet crossover and its
relationship with the length of the connection chain. Section 4
shows our new detection algorithm to identify long connection
chains from short ones. The final section summarizes our work
on stepping-stones detection.

II. LITERATURE SURVEY AND DEFINITIONS

In this section, we briefly review current research in
stepping-stone intrusion detection.

2.1 Definitions and Assumptions

Network security has been a research topic for decades
[7][8][9][10]. Intrusion detection provides a network, as well
as resources that are stored in the network, accessible device
protection from intruders attemping to steal information.
Authentication can be deployed as the first step in the defense
of network security. Username and password can be to
authorize users into the system. There are also other
authentication mechanisms such as tokens, fingerprints, and
retina recognition.

Secure Shell (SSH) is a cryptographic network protocol for
securing data communication, remote command-line login,
remote command execution, and other secure network services
between two networked computers. It connects via a secure
channel over an insecure network, with a server and a client
running SSH server and SSH client programs, respectively
[16]. Although the data field of an SSH packet is encrypted, the
header fields of a packet are given in plain text. This plain text
header can reveal information such as the type of packet, the
source/destination IP, and the size of a packet.

Stepping-stones are a typical way for a hacker to hide his
identity. Using stepping-stones makes tracking the IP address
of an intruder difficult, since these stepping-stones may be
located in different countries. A hacker may log in to a
stepping-stone computer and start a new connection to another
computer from this machine and do the same thing repeatedly.
Those intermediate stepping-stones computers form a
connection chain. Anytime such long chains are detected, it is a
sign that someone may be trying to intrude into a system and
conceal their activities. This is the type of intruder that we are
trying to detect and prevent.

During a connection with SSH, each client’s keystrokes
generate a request packet, sometimes called “send packet”;
Upon receipt, the server sends one or more response packets,
sometimes called “echo packets” back to the client, which
appear in the client’s terminal window.

Ideally, the client host sends out the next request after
receiving the response packet(s) from the previous request.
However, this significantly slows down communication
between the client and the server. To speed up
communication, the TCP/IP protocol allows the client host to
send out the request packets before receiving responses, up to a
limit determined by the size of a buffer. In these cases, the
request packet will “meet” the incoming response packet
halfway. We call this situation “crossover”. Every time a

request packet meets a response packet, one crossover is
counted.

In summary, the type of intrusion that we discuss in this
paper has the following characteristics: (1) the intruder must
log in to a target host in order to steal information or cause
other damage to that system and (2) the data content of the
connection may be encrypted and not visible to any detection
algorithm. Denial of service (DoS) attacks, for example, do
not fall under this category.

2.2 Previous Work

There have been quite a few studies focused on stepping-
stone detection, which have used various techniques to
discover the hosts used by a hacker to avoid tracing. For each
stepping-stone host, there may be a number of incoming and
outgoing SSH connections. If the packet pattern of an
incoming connection and that of an outgoing connection are
highly correlated, that host is certainly suspicious.

Staniford-Chen and Heberlein [5] are the pioneers in the
stepping-stone detection area. Their early research was based
on the content of captured packets. Thumbprints are short
summaries of connection packets captured in cross-traffic.
They compared thumbprints to determine whether the bi-
directional packets contain the same content. If so, the host is
likely to be an intermediate node in a long connection chain.
However, this method is only able to detect stepping-stones
using unencrypted messages, such as on a Telnet connection.
The algorithm cannot be applied when dealing with encrypted
connections such as SSH.

Wang and Reeves [11] proposed a novel intrusion
framework called “Sleepy Watermark Tracing" (SWT). It
integrated a sleepy intrusion response scheme, a watermark
correlation technique, and an active tracing protocol. The term
“sleepy” refers to the fact that no overhead is introduced when
no intrusion is detected, but the overhead becomes active when
detecting an intrusion. The target host will inject a watermark
into the backward connection of the intrusion, and then wake
up to collaborate with routers along the chain. Wang and
Reeves’ work is quite inspiring, since they made it possible to
trace back to the original source node in real time when a
hacker uses a long chain to cover their presence in order to
achieve interactive intrusion.

Due to its protection of privacy, SSH is gradually becoming
the most useful remote connection tool over Telnet. In order to
adapt to new ways of connection, Zhang and Paxson [4]
proposed a method using timing correlation of ON/OFF
periods of different connections to detect stepping-stone
attacks. Because they rely on the properties of interactive
traffic, such as packet sizes and idle periods, they do not need
to look at packet contents on the connections in order to detect
intrusions. Their algorithm provides good accuracy and
reduced workload in capturing packets by only keeping packet
headers. However, there is still a weakness in their approach: it
cannot distinguish legitimate stepping-stones from malicious
ones.

Yung’s research [12] focused on estimating the RTT for
outgoing connections using request-and-response pairs
between a client and a downstream server. Yung’s approach

monitors an outgoing connection to estimate two metrics. The
first metric is the time gap between requests from the client and
acknowledgements from the downstream server, which is used
to estimate the RTT between the client and the server. The
second metric is the time gap between the client’s request and
the server’s response, which is used to estimate how far away
the targeted server is. These two metrics are also used to
estimate how many hops there are on the connection chain
from hacker to victim. This method performs well in
identifying connections with more than two downstream hops
and can be used on interactive sessions, such as Telnet and
SSH. However, the time gaps are greatly influenced by the
network environment and the end machine, since any delay in
network traffic or on the server side could impact the size of
the RTT.

Yang and Huang [6] proposed an algorithm to estimate the
length of downstream connection chains by monitoring
outgoing and incoming packets. Their algorithm computes the
RTT in a request and response pair. By capturing the changes
in these RTTs, the number of nodes in the downstream chain
can be estimated. With this approach, the user can determine if
his machine is being used as a stepping-stone when the hacker
is connected to a target server, and then take measures to stop
the intrusion. This method is able to detect intrusion in real-
time, which is important. It also delivers an accurate result for
estimating the length of a downstream connection chain.

After Yang and Huang’s work [6], they proposed two
additional algorithms [13] for matching TCP send-and-echo
packets. One algorithm is relatively conservative, and can
accurately match a smaller number of packets, whereas the
other one is heuristic, and can match a larger number of
packets with less accuracy. The authors justified the
correctness of their conservative algorithm. By applying these
two algorithms in their experiments, results show that both
algorithms could achieve the same performance. If the
conservative algorithm failed to generate enough data, the
heuristic one would be used as a supplement. The combined
algorithms can detect intruders in real-time. This approach can
also estimate an encrypted connection chain length accurately,
even with fluctuating network traffic. The major weakness of
this approach is that it requires capturing packets throughout a
given connection session. Since previous research [13] was
not able to capture enough send packets using a conservative
algorithm, Yang and Huang [14] proposed a new clustering
partitioning algorithm to extract the timestamps from the send-
and-echo packets in a connection chain.

Ding et al. [7] continued detection work from another
perspective by proposing an intrusion detection algorithm
based on the target host at the end of a chain, instead of on the
intermediate host. They analyzed the delay between the time a
user presses the enter button to finish a Unix command and the
time that the user types the next character, and used an
approximated upstream round-trip time to separate long
connection chains from short ones. Their results show that this
proposed algorithm is able to distinguish long from short
connection chains with relatively low false positive rate under
certain conditions. Our paper attempts to find a better
detection algorithm under the same assumptions.

III. PACKET CROSSOVERS IN THE CONNECTION CHAIN

Ding et al. [7] discovered the “crossover” issue in their
examination of long connection chain packets. In this section
we discuss the relationship between the number of crossovers
and the length of a given connection chain. Throughout this
paper, we will be using the following setup as our test
environment. Our main goal is to distinguish and identify long
connection chains from short connection chains. The length of
a short chain is obviously where length equals 1 hop. One hop
is defined as one connection between an SSH client and an
SSH server. The length of a long chain in our experiment was
set at 3 hops. The four servers used to create a 3-hop
connection chain are shown in Figure 2. All three hops were
routed on the Internet, not on our campus LAN. Note that we
collected all packets at all four nodes for this experiment, but
only used the data at the target host in Georgia for the detection
analysis. The other data have been saved for future analysis.
For the data in short chains, a connection was created between
the University of Houston and Pittsburg.

Each time a user on the client-side presses a key, the client
host generates a request packet with the padded and encrypted
character as the content for the next server. The server sends a
response packet back to the client after processing the request
packet. If the server is an intermediate stepping-stone host, it
turns around and sends the request via a separate packet to the
next SSH server and waits for its response. If the server is the
intended target host, then the host processes the request, which
includes sending a response packet back with the same
character in it. Occasionally, if a complete command has been
received at the server side, the server sends one or more
packets back with the reply. Thus RTT can be measured in the
first host by computing the difference between the timestamps
of the request and response packets. The first two
communications in Figure 3 illustrate how such an RTT can be
computed. Note that the processing time at the end of the
chain is typically very small. A server may also send an
acknowledgement packet if no response is ready to be sent.
When the user closes the connection, the server process
terminates, and the auxiliary server continues to listen for new
SSH connection requests [15].

According to the TCP/IP protocol, a client is allowed to
send a limited number of packets to the server without having
to wait for a response. The packet RTT for different request
packets will be different. This can be modeled as a random

variable, depending on network traffic and the availability of
the hosts involved. Normally, request and response packets
stay in the same sequence at both ends of the connection. Also,
RTTs between two consecutive hosts are much shorter than
intervals between manual keystrokes.

We then formally define packet crossovers and state our
assumptions about the crossovers. When TCP/IP services are
started on an SSH server host, the auxiliary server creates a
listening socket for the SSH, enabling it to accept a remote
connection request. When the client executes an SSH
command on a remote client host, the SSH client is initiated.
The client reads the configuration file and initiates a TCP
connection to a server host using the specified destination port.
On an SSH server host, the auxiliary server creates a copy of
the server process, which reads the server's configuration file.
The SSH client and server exchange information about
supported protocol versions. During the connection, the SSH
server runs in a loop, accepting request messages from the
client, performing required actions, and returning response
messages to the client. For a stepping-stone type of connection,
there is a different packet between every pair of successive
hosts in a chain.

If a connection chain is long enough, the round-trip time of
a packet may be longer than intervals between two consecutive
keystrokes. For data transfer, the client is allowed to send
further messages, subject to a limit, without waiting for the
response to the request [16]. Therefore, if the client’s keystroke
intervals are longer than the RTT, the response packet will
arrive at the client’s machine before another request is sent out.
On the other hand, if the client’s keystroke intervals are shorter
than the round-trip time of the previous packet, there will be
two or more consecutive request packets sent before a response
packet arrives. Thus, the probability that an RTT is greater than
the key intervals is higher in a long connection chain. When a
response packet arrives at the client’s machine later than
another request packet is sent out, this response packet will
“meet” the coming request packet halfway before arrival,
which is called “crossover.” Two crossovers are shown in
Figure 3.

Crossover of the request and response packets requires
more explanation. When a packet “crossover” happens, the
downstream node stays in the normal request/response packet
order, whereas the upstream node sends out the next request

packet before receiving a response packet for the previous one.
Then at the upstream node, there will be two consecutive
request packets whose sequence is different from those at the
downstream node.

The rest of this paper is based upon the assumption that
there are more crossovers generated in a long connection chain
than in a short one. In other words, the longer a connection
chain is, the more crossovers there are, which means the
number of packet crossovers is positively correlated to the
length of the connection chain. We plan to validate this
crossover assumption in a separate work.

IV. DETECTION OF LONG CONNECTION CHAINS

The existence of the packet crossover and its relationship
with the chain length provided a base for our algorithm.
Although we made the assumption that a high number of
crossovers implies a long connection chain, we were unable to
use this to identify long connection chains, because of the lack
of packet information. We did not have packet information
along the whole chain, except for the last host where the
monitoring algorithm resides (Figure 1). Nevertheless, a large
number of crossover packets will alter the distribution of
packet gaps. This section describes an algorithm that captures
those gap variances resulting from a large number of packet
crossovers. With this algorithm, it is possible to distinguish and
identify long connection chains from shorter chains.

A reasonable way to approximate the chain length is by
using the RTT. However, the monitoring algorithm is unable to
calculate the RTT when the algorithm is located at the target
server. The best we can do is an Upstream RTT (uRTT), which
is defined as the time gap between sending a respnose packet
and the receiving of the next request packet at the target server
An example is provided of RTT and uRTT in Figure 3. The
uRTT in general does not represent the real RTT because there
is potentially a delay before the next request packet is sent. An
example of uRTT is shown in Figure 3; it is the difference
between the timestamps of a response packet and that of the
next request packet received at the target server.

Even though uRTTs are not very accurate in general, we
were hoping that one of them would provide a good estimation
of the true RTT. This is possible when the client queues the
key strokes pending the reply packets. So we looked at the
minimum of all uRTTs, and we were surprised by some of the
values, as some were much smaller than what real RTTs
should be. It turned out that the problem was caused by the
packet crossovers, particularly in a long connection chain. For
example, if we compute the uRTT of the second pair of
timestamps at Host 4, the uRTT2 is much smaller than RTT or
the first uRTT1 in Figure 3. The reason for this difference is
precisely due to the crossover of a response packet (Echo 2)
with a Request packet (Send 3).

We can classify all the uRTT gaps into two types: “Inter-
command Gap” and “Intra-command Gap” [7]. Each operating
system command is usually followed by an “Enter” key. Inter-
command Gap refers to the time gaps between a return
character and the first character of the next Unix command
entered by the user. Intra-command Gap refers to the time gaps

between two keystrokes within a single command, i.e., with no
return or end-of-line characters.

The reason for separating Inter- and Intra-command Gaps is
to filter out some of the packet gaps that are not contributing to
our detection algorithms. The Intra-command Gaps essentially
measure the typing speed of a user and do not depend on the
length of the chain. On the other hand, Inter-command Gaps
may be influenced by the chain length. The user may have to
digest the result from the prior command to determine what to
do next. An algorithm was presented in [7] to filter out Intra-
command Gaps. The Inter-command Gaps are used to build a
profile characterizing a given connection chain.

From our experiments, we conclude that long connection
chains will generate a number of packet crossovers. Even
though we do not have solid numbers to support this claim,
from our observations, the number of crossovers is
proportional to the length of the connection chain. These
crossovers resulted in some relatively small Inter-command
Gaps that were smaller than the actual RTT. Thus, if there are
an unusual number of small Inter-command Gaps, it is highly
likely to be a long connection chain.

Figure 4 shows two sample “profiles” of Inter-command
Gaps, one for a 1-hop chain and the other for a 3-hop chain.
The profile is sorted in ascending order of the gap values after
filtering out the Intra-command Gaps. In general, the gap
values are higher for the longer chain. However, the gap values
dropped at the beginning of the profile for the long chain, i. e.,
there are some very small uRTTs for the long chain, visible in
the two curves in Figure 4. This dip happened in all 20 long
chain cases that we tested. On the other hand, there is no
significant dip for the short chain, represented by the dotted
curve in Figure 4. Consequently we can view the existence of
very small uRTTs as a signature for a long chain.
Unfortunately, we cannot measure the packet crossover by only
examining the packets at the target server. We are able to
observe a side-effect of the dip in the profile. After the first few
very small uRTTs, the gap value has to increase to their
normal, higher value. So, there is a sharp rise in the gap values
in the profile.

We then reduced the problem of finding a long connection
chain to finding a sharp rise in the profile of its Inter-command
Gaps. There are two ways to measure the “sharp rise” of a
curve: (a) measure the difference of the successive gaps and
look for the largest difference, or (b) measure the ratio of two
successive gaps and look for the largest ratio. Both of these
methods were tested and the ratio approach turned out to be the
better method. An algorithm to find a long connection chain is
shown below. In the algorithm, we computed the ratio of two
successive gaps as a measurement of the sharpness of the rise
of the profile. If the largest rise in the ratio is higher than a
threshold value, the algorithm returns “long connection chain”.

Detection Algorithm: to determine whether the connection
chain is a long or short one, given all the packet
information at a target server.

Step 1: Extract request/response SSH packets from data
collected at the targeted server of the selected
connection.

Step 2: Compute the uRTT gaps of successive packets
and sort them in ascending order.

Step 3: Filter out the Intra-command Gaps and keep
only the Inter-command Gaps G[i] sorted in
ascending order.

Step 4: Compute the ratios of successive gaps over their
previous ones, R[i] = G[i]/G[i-1]. (An alternative
is to find the difference of the two gaps.)

Step 5: Find the maximum gap ratio
 mgr =
and if this maximum ratio mgr is greater than a
predetermined threshold t, it is considered to be
a long connection chain. Otherwise, it is a short
one.

The above algorithm did not specify what threshold value
to use, because there is no universal threshold that can be used
in all situations. Each installation should conduct its own
experiment and derive the best threshold to use for that server.
We shall describe the algorithm to find such a threshold below.
There is an obvious trade-off between the accuracy of our
ability to detect long connection chains (lower t value) and the
false positive rate.

V. VALIDATION OF THE ALGORITHM

To validate the algorithm, we designed an experiment to
compare long connection chains with short connection chains.
The experiment was conducted over the Internet starting from
the University of Houston (UH) campus. A short chain is
defined as one single connection (1-hop) from our campus to a
host off-campus. A long connection is defined as a 3-hop
chain, i. e., a chain of 4 hosts connected with three connections.
All intermediate stepping-stone hosts are located within the
U.S., but are not geographically close to our campus. A total
of 20 short chains and 20 long chains were collected for our
analysis.

To illustrate how the algorithm works, we shall look at
some selected sample profiles. Table I presents three of the
twenty long-connection cases tested. For each case, we listed

the Inter-command Gaps and the gap ratio computed in Step 4
of the algorithm.

Due to the packet crossovers, the first few gaps in the
profiles for long chains are very small; thus, it is easier for us
to identify the sharp increase in the gap ratio. As one can see,
there is one ratio in bold that stands out among all of the ratios
in each of the three cases. The first two cases are the typical
cases from the experiments, while Case 3 is the worst case, i.
e., the profile with the lowest mgr value among all twenty test
cases. Note that we only listed the first fifteen values of the
profile to save space. Showing more values does not give
more insight into how the algorithm works.

TABLE I. THREE CASES OF RATIOS OF CONSECUTIVE GAPS AMONG

TWENTY LONG CONNECTION CHAINS COLLECTED IN OUR EXPERIMENTS
(CHAIN LENGTH = 3 HOPS).

 Case 1 Case 2 Case 3

Gap Ratio Gap Ratio Gap Ratio

1 0.045 0.020 0.043

2 0.046 1.022 0.043 2.190 0.045 1.030

3 0.046 1.001 0.044 1.021 0.045 1.003

4 0.047 1.021 0.045 1.020 0.045 1.001

5 0.512 10.972 0.045 1.005 0.069 1.550

6 0.520 1.017 0.551 12.138 0.073 1.054

7 0.523 1.005 0.553 1.004 0.190 2.604

8 0.551 1.053 0.686 1.241 0.354 1.863

9 0.591 1.073 0.690 1.005 0.459 1.295

10 0.651 1.103 0.724 1.049 0.473 1.031

11 0.655 1.005 0.734 1.014 0.527 1.114

12 0.660 1.009 0.765 1.042 0.554 1.050

13 0.672 1.017 0.798 1.043 0.613 1.108

14 0.698 1.039 0.851 1.067 0.637 1.039

15 0.700 1.003 0.855 1.004 0.660 1.036

We did a similar analysis for short connection chains, as
illustrated in Table II. The ratios for the short chains were
supposed to be low, but we did see some outlier values, as
shown in Case 3, which is, again, the worst case of the twenty
short connection chains. The reason for this very strange worst
case is unknown. However, for most of the cases, the mgr for
the short chains, highlighted in Table II, is smaller than those
of the long chains. We can use this as a feature to separate the
two cases.

The algorithm then took the forty mgr numbers, mixed
them together, and sorted them in ascending order. As shown
in Figure 5, most short chain (blue circles) and long chain (red
squares) data points stay in the lower part and the upper part of
the chart, respectively. Figure 5 may be used to evaluate the
accuracy of our algorithm. For example, if we select the
threshold t to be 6.0, then there is one short chain misclassified:
the only blue circle above 6.0, which is a false positive. At the
same time, there are three long connection chains that we were
unable to detect, or three false negative cases. The system
administrator at the target server can determine the threshold
value depending on the false rate he/she is willing to tolerate.

TABLE II. THREE CASES OF RATIOS OF CONSECUTIVE GAPS AMONG

TWENTY SHORT CONNECTION CHAINS COLLECTED IN OUR EXPERIMENTS

(CHAIN LENGTH = 1 HOP).

 Case 1 Case 2 Case 3

Gap Ratio Gap Ratio Gap Ratio

1 0.051 0.052 0.050

2 0.052 1.022 0.052 1.000 0.052 1.035

3 0.052 1.004 0.055 1.059 0.499 9.558

4 0.127 2.443 0.127 2.308 0.513 1.027

5 0.195 1.538 0.241 1.905 0.519 1.012

6 0.196 1.006 0.260 1.077 0.526 1.014

7 0.204 1.041 0.283 1.090 0.583 1.108

8 0.287 1.409 0.310 1.095 0.596 1.023

9 0.306 1.063 0.339 1.094 0.598 1.003

10 0.363 1.189 0.350 1.032 0.614 1.027

11 0.397 1.093 0.372 1.064 0.630 1.026

12 0.429 1.079 0.388 1.042 0.678 1.076

13 0.431 1.004 0.469 1.208 0.701 1.033

14 0.442 1.026 0.510 1.088 0.702 1.003

15 0.470 1.065 0.533 1.044 0.706 1.005

In order to better examine the detection rate of this method,
we set the ratio threshold at different levels to distinguish long
connection chains from short ones. For example, if we set the
ratio threshold as 6, there is only one data point falling into the
false positive category, which means a false positive ratio of
5%. Meanwhile, seventeen of the twenty long connection
chains are correctly detected with a accuracy (true positive)
rate of 85%.

In this way, we can generate an ROC (Receiver Operating
Characteristic) curve with different combinations of false/true
positive ratios. The ROC curve gives a simple visual
evaluation of the accuracy and false alarm rate of our method
in long connection chain detection. Depending on the amount
of false positives one is willing to tolerate, one can estimate the
accuracy of the detection algorithm. The ROC curve is
presented in Figure 6, which turns out to be better than that of
previous research. Note that in our experiment, the goal was to
be able to identify long chains of 3 hops vs. 1 hop. This is
much more challenging than the prior research which is to

separate a length of 4 hops vs. a length of 1 hop. We also
tested 5 hops vs. 1 hop and the detection rate is 100% with no
false positives. That result is not shown here, to save space.

VI. CONCLUSION

Cyber attacks through stepping-stones have been widely
used by hackers to avoid being detected. Stepping-stones
intrusion detection can effectively prevent the hackers from
being traced back to their source. It is important for a server to
be sure that there are no long stepping-stone chains that are
connecting to it through an SSH server.

In this paper, we proposed a new approach to detect long
connection chains based on the hypothesis that the number of
packet crossovers is approximately proportional to the length
of a given connection chain. Our approach is able to detect
connection chains of three hops with a better accuracy than the
previous research. Our algorithm is based on the sharp rise of
the Inter-command Gap profile of a chain. Experiments were
conducted to validate our algorithm, and for a 3-hop chain we
were able to detect 85% of the long chains with only a 5% false
positive rate. This result is based on a particular threshold we
picked in the analysis. The threshold is not arbitrary; it
depends on each installation of the algorithm depending on
network speed, among other factors. By studying the training
cases, each installation can determine a threshold that gives
them an acceptable False Positive rate.

Note that this paper did not address the issue of estimating
packet crossovers. It remains to be seen if we can collect
enough evidence to validate the hypothesis about packet
crossovers. The strategy proposed in this paper was designed
for SSH protocol only. Future work will investigate whether

this method works for other protocols, for example, a chain of
HTTP or SOCKS proxies.

Our research helps servers to identify potentially dangerous
connections by detecting users connecting to a SSH server by
using long connection chains to hide their identity. The
algorithm requires packet data at the server, i. e., end of chains
only. The passive algorithm does not interfere with the
connection. In our experiment, we used Wire Shark to collect
packet data for off-line analysis. The algorithm may be
converted to an online real-time monitor algorithm that can
alert a system administrator during an attack.

ACKNOWLEDGEMENTS

We would like to thank Chenlei Zhang, Lingjia Deng, and
Dr. Jianhua Yang for their assistance in making their servers
available for our experiments. This research was supported in
part by NSF Grant 1062954.

REFERENCES

[1] LinkedIn Corp. Linkedin Passwords Compromise. URL: http:

//blog.linkedin.com/20-12/06/06/linkedin-member-passwords-

compromised/, accessed April 8, 2014.

[2] Sony Corp. Sony PlayStation Network/Qriocity Services Outage.
URL: http://bl-og.us.playstation.com/2011/04/22/update-on-
playstation-network-qriocity-services/, accessed April 8, 2014.

[3] Wikimedia Foundation. Sony PlayStation Network Outage. URL:
http://en.wiki-pedia.org/wi-ki/PlayStation_Network_outage/,
accessed April 8, 2014.

[4] Y. Zhang and V. Paxson. Detecting stepping stones. In
Proceedings of the 9th Conference on USENIX Security
Symposium, volume 9, pages 171-184, 2000.

[5] S. Staniford-Chen and L. Heberlein. Holding intruders
accountable on the Internet. In Proceedings of IEEE Symposium
on Security and Privacy, pages 39-49, May 1995.

[6] J. Yang and S. Huang. A real-time algorithm to detect long
connection chains of interactive terminal sessions. In
Proceedings of the 3rd International Conference on Information
Security, pages 198-203, 2004.

[7] W. Ding, M.J. Hausknecht, S. Huang and Z. Riggle. Detecting
stepping-stone intruders with long connection chains. In
Proceedings of the 5th International Conference on Information
Assurance and Security, Volume 2, pages 665-669, 2009.

[8] Peter G. Neumann and Phillip A. Porras. Experience with
emerald to date. In 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, pages 73-80, April 1999.

[9] Stefan Axelsson. Intrusion detection systems: A survey and
taxonomy. In Technical Report 99-15, Department of Computer
Engineering, Chalmers University, March 2000.

[10] Richard P. Lippmann. Evaluating intrusion detection systems:
The 1998 DARPA off-line intrusion detection evaluation. In
Proceedings of DARPA Information Survivability Conference
and Exposition, pages 12-26, 2000.

[11] X. Wang and D. Reeves. Sleepy watermark tracing: An active
network-based intrusion response framework. In Proceedings of
the 16th International Information Security Conference, pages
369-384, 2001.

[12] K. H. Yung. Detecting long connection chains of interactive
terminal sessions. In Proceedings of Recent Advances in
Intrusion Detection, Lecture Notes in Computer Science, pages
1-16, 2002.

[13] J. Yang and S. Huang. Matching TCP packets and its application
to the detection of long connection chains on the Internet. In
19th International Conference on Advanced Information
Networking and Applications (AINA), Volume 1, pages 1005-
1010, 2005.

[14] J. Yang and S. Huang. A clustering-partitioning algorithm to
find TCP packet round-trip time for intrusion detection. In 20th
International Conference on Advanced Information Networking
and Applications (AINA), Volume 1, pages 231-236, 2006.

[15] Hewlett-Packard. How the SSH Client and Server
Communicate. URL: http://h71000.www7.hp.com/doc/83final/
ba548_90007/ch01s04.html, accessed April 8, 2014.

[16] T. Ylonen and C. Lonvick, The Secure Shell (SSH) Connection
Protocol, IETF RFC 4254, January 2006;
http://www.ietf.org/rfc/rfc4254.txt.

[17] Wikimedia Foundation. OSI model. URL: http://
en.wikipedia.org/ wiki/OSI_model, accessed April 8, 2014.

[18] Ping Li; Wanlei Zhou; Yini Wang, "Getting the Real-Time
Precise Round-Trip Time for Stepping Stone Detection," 2010
4th International Conference on Network and System Security
(NSS), pp.377-382, 1-3 Sept. 2010.

